The Rabin-Karp algorithm:A different approach to exact matching

\author{

- wniversity of MARYLAND
}

Eliminating spurious comparisons through "fingerprinting"

Rabin-Karp is a form of semi-numerical string matching:

Instead of focusing on comparing characters, think of string as a sequence of bits or numbers and use arithmetic operations to search for patterns.

Tends to work best for short patterns, and when there are relatively few occurrences of the pattern in the text.

Characters as digits

- Assume $\sum=\{0, \ldots, 9\}$
- Then a string can be thought of as the decimal representation of a number:

427328

- In general, if $|\Sigma|=d$, a string represents a number in base d.
- Let $p=$ the number represented by query P.
- Let $t_{s}=$ the number represented by the $|P|$ digits of T that start at position s.

$$
P \text { occurs at position } s \text { of } T \Leftrightarrow p=t_{s} .
$$

If the pattern is "small", comparison can be fast ($O(1)$)

- Imagine $\log _{2}\left(\left|\sum\right|\right) *|P|<=64$ (typical word size)
- Then, both p and t_{s} can fit in a machine word, and comparison can be done in constant time.
- 2 problems:
- How do we encode the string into a word in constant time?
- What do we do when $\log _{2}(|\Sigma|)^{*}|P|>64$?

Computing p and t_{s}

- Consider representing P via the following polynomial:

$$
p=P[m]+P[m-1] 10^{1}+P[m-2] 10^{2}+\ldots+P[1] 10 m-1
$$

- Use Horner's rule to compute $\mathrm{O}(|P|=m)$:

$$
p=P[m]+10(P[m-1]+10(P[m-2]+\ldots+10(P[2]+10 P[1]) . . .)
$$

- Example: $427328=(8+10(2+10(3+10(7+10(2+10 \times 4)))))$
- t_{0} can be computed the same way in time $O(|P|=m)$.
- t_{s} can be computed from t_{s-1} in $\mathbf{O (1)}$ time:

Rabin-Karp

Compute p.
Iteratively compute t_{s}.
Output s when $t_{s}=p$.

Problem: p and t_{s} might be huge numbers.
Solution: compute everything modulo some large prime number q.

- If $10 q$ is \leq word size, then $p \bmod q$ and $t_{s} \bmod q$ can be computed in a single word.
- If p occurs at t_{s}, then $p \equiv t_{s}(\bmod q)$

New problem: If $p \equiv t_{s}(\bmod q)$, it doesn't necessarily mean there is a match at s.
New solution: if $p \equiv t_{s}(\bmod q)$, check match explicitly.

```
Worst-case runtime = O(mn), if every position is a match or false positive.
```


Rabin-Karp: Example

Slight deviation from above : We will follow the code presented at the end of this lecture, and adopt a 32-bit (signed) fingerprint. Nothing about these details changes the fundamental concept.
$\mathbf{T}=$ "try eduroam; it won't work"
$\mathbf{P}=$ "eduroam"
$\mathbf{d}=256 \quad \mathbf{p}=109+256(97+256(111+(256(114+256(117+256(100+256 * 101)))))) \% 101=72$
$q=101$
m
a
O
u

$$
\mathbf{t}_{\mathbf{0}}=117+256(100+256(101+(256(32+256(121+256(114+256 * 116)))))) \% 101=2
$$

Rabin-Karp: Example

Slight deviation from above : We will follow the code presented at the end of this lecture, and adopt a 32-bit (signed) fingerprint. Nothing about these details changes the fundamental concept.
$\mathbf{T}=$ "try eduroam; it won't work"
$\mathbf{P}=$ "eduroam"
$\mathbf{d}=256 \quad \mathbf{p}=109+256(97+256(111+(256(114+256(117+256(100+256 * 101)))))) \% 101=72$
$q=101$
m a
a $\quad 0$
u
e

$$
\begin{aligned}
& \mathbf{t}_{\mathbf{0}}=2 \sim \quad 2566 \% 101 \\
& \mathbf{t}_{\mathbf{1}}=\left(256\left(2-25^{*} 116\right)+114\right) \% 101=71
\end{aligned}
$$

Rabin-Karp: Example

Slight deviation from above : We will follow the code presented at the end of this lecture, and adopt a 32-bit (signed) fingerprint. Nothing about these details changes the fundamental concept.
$\mathbf{T}=$ "try eduroam; it won't work"
$\mathbf{P}=$ "eduroam"
$\mathbf{d}=256 \quad \mathbf{p}=109+256(97+256(111+(256(114+256(117+256(100+256 * 101)))))) \% 101=72$
$q=101$
m a

$$
\begin{aligned}
& \mathbf{t}_{1}=71 \\
& \mathbf{t}_{\mathbf{2}}=\left(256\left(71-25^{*} 114\right)+111\right) \% 101=30
\end{aligned}
$$

Rabin-Karp: Example

Slight deviation from above : We will follow the code presented at the end of this lecture, and adopt a 32-bit (signed) fingerprint. Nothing about these details changes the fundamental concept.
$\mathbf{T}=$ "try eduroam; it won't work"
$\mathbf{P}=$ "eduroam"
$\mathbf{d}=256 \quad \mathbf{p}=109+256(97+256(111+(256(114+256(117+256(100+256 * 101)))))) \% 101=72$
$q=101$
$m \quad a$

$$
\begin{aligned}
& \mathbf{t}_{\mathbf{2}}=30 \\
& \mathbf{t}_{3}=\left(256\left(30-25^{*} 121\right)+97\right) \% 101=68
\end{aligned}
$$

Rabin-Karp: Example

Slight deviation from above : We will follow the code presented at the end of this lecture, and adopt a 32-bit (signed) fingerprint. Nothing about these details changes the fundamental concept.
$\mathbf{T}=$ "try eduroam; it won't work"
$\mathbf{P}=$ "eduroam"
$\mathbf{d}=256 \quad \mathbf{p}=109+256(97+256(111+(256(114+256(117+256(100+256 * 101))))) \% 101=72$
$q=101$
m a
$t_{3}=68$
$\mathbf{t}_{4}=\left(256\left(68-25^{*} 32\right)+109\right) \% 101=72$

Rabin-Karp: Example

Slight deviation from above : We will follow the code presented at the end of this lecture, and adopt a 32-bit (signed) fingerprint. Nothing about these details changes the fundamental concept.
$\mathbf{T}=$ "try eduroam; it won't work"
$\mathbf{P}=$ "eduroam"
$d=256$

$q=101$ m a

$$
\begin{aligned}
& \mathbf{t}_{3}=68 \\
& \mathbf{t}_{4}=\left(256\left(68-25^{*} 32\right)+109\right) \% 101=\overparen{72}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{} \quad \stackrel{\stackrel{\mathbf{t}_{4}}{\downarrow}}{\mathbf{T}=\text { "try }} \stackrel{\stackrel{1}{\text { eduroam; }} \text {; it won't work" }}{\text { eduroam }} \\
& \mathbf{P}=
\end{aligned}
$$

Rabin-Karp: Example

Slight deviation from above : We will follow the code presented at the end of this lecture, and adopt a 32-bit (signed) fingerprint. Nothing about these details changes the fundamental concept.
$\mathbf{T}=$ "try eduroam; it won't work"
$\mathbf{P}=$ "eduroam"
$\mathbf{d}=256 \quad \mathbf{p}=109+256(97+256(111+(256(114+256(117+256(100+256 * 101)))))) \% 101=72$
$q=101$

$$
\begin{aligned}
& \mathbf{t}_{4}=72 \\
& \mathbf{t}_{5}=8 \\
& \mathbf{t}_{6}=97 \\
& \mathbf{t}_{7}=4 \\
& \mathbf{t}_{8}=53 \\
& \mathbf{t}_{9}=100
\end{aligned}
$$

$$
\mathbf{t}_{10}=11
$$

$$
\mathbf{t}_{16}=37
$$

$$
\mathbf{t}_{11}=5
$$

$$
\mathbf{t}_{17}=29
$$

$$
\mathbf{t}_{12}=15
$$

$$
\mathbf{t}_{18}=98
$$

$$
\mathbf{t}_{13}=69
$$

$$
\mathbf{t}_{14}=58
$$

$$
\mathbf{t}_{15}=84
$$

Rabin-Karp Notes

- If your pattern is very small, don't need to use the $(\bmod q)$ trick, and you can avoid false positive matches.
- You can also pick several different primes $q_{1}, q_{2}, \ldots, q_{k}$ and then require that:

$$
\begin{gathered}
p \equiv t_{s}\left(\bmod q_{1}\right) \\
p \equiv t_{s}\left(\bmod q_{2}\right) \\
\vdots \\
p \equiv t_{s}\left(\bmod q_{k}\right)
\end{gathered}
$$

Rabin-Karp Notes

- Think about this with respect to DNA / RNA; how long of a pattern can we search for, without using the mod trick, if we choose the right encoding (assume machine word $=64$-bits)?

Rabin-Karp Notes

- Think about this with respect to DNA / RNA; how long of a pattern can we search for, without using the mod trick, if we choose the right encoding (assume machine word $=64$-bits)?
- We can search for a pattern of length $<=32$. Consider encoding each nucleotide in 2-bits e.g. $A=00, C=01, G=10, T=11$. Then a string of up to 32 nucleotides fits in a single machine word.
- For a good rolling hash for nucleotides, see the ntHash paper (https:// academic.oup.com/bioinformatics/article/32/22/3492/2525588)

Basic implementation of Rabin-Karp following implementation
in CLRS (code from https://www.geeksforgeeks.org/rabin-karp-algorithm-for-pattern-searching/)

