
The Rabin-Karp algorithm : A
different approach to exact matching

Eliminating spurious comparisons
through “fingerprinting”

Rabin-Karp is a form of semi-numerical string matching:

Instead of focusing on comparing characters, think of string as a
sequence of bits or numbers and use arithmetic operations to
search for patterns.

Tends to work best for short patterns, and when there are relatively
few occurrences of the pattern in the text.

Characters as digits

• Assume ∑ = {0,...,9}

• Then a string can be thought of as the decimal representation of a number:

• In general, if |∑| = d, a string represents a number in base d.

• Let p = the number represented by query P.

• Let ts = the number represented by the |P| digits of T that start at position s.

427328

P occurs at position s of T ⇔ p = ts.

Slide adapted from material by Carl Kingsford

If the pattern is “small”, comparison can
be fast (O(1))

• Imagine log2(| ∑ |) * |P| <= 64 (typical word size)

• Then, both p and ts can fit in a machine word, and comparison can be done in
constant time.

• 2 problems:

• How do we encode the string into a word in constant time?

• What do we do when log2(| ∑ |) * |P| > 64 ?

ts = 10(ts-1 - 10m-1T[s-1]) + T[s+m-1]

Computing p and ts

• Use Horner’s rule to compute O(|P|=m):

p = P[m] + P[m-1]101 + P[m-2]102 + ... + P[1]10m-1 

427328 = (8+10(2+10(3+10(7+10(2 + 10 × 4))))) • Example:

remove high-
order digit 

add next digit of T as the low-
order digit 

• t0 can be computed the same way in time O(|P|=m).

shift left
by 1 digit 

• ts can be computed from ts-1 in O(1) time:

Slide adapted from material by Carl Kingsford

• Consider representing P via the following polynomial:

p = P[m] + 10(P[m-1] + 10(P[m-2] + ... + 10(P[2] + 10P[1])...) 

Rabin-Karp

Problem: p and ts might be huge numbers.

Solution: compute everything modulo some large prime number q.

• If 10q is ≤ word size, then p mod q and ts mod q can be computed in a single
word.

• If p occurs at ts, then p ≣ ts (mod q)

New problem: If p ≣ ts (mod q), it doesn’t necessarily mean there is a match at s.

New solution: if p ≣ ts (mod q), check match explicitly.

Compute p.

Iteratively compute ts.

Output s when ts = p.

Worst-case runtime = O(mn), if every position is a match or false positive. 

Slide adapted from material by Carl Kingsford

Rabin-Karp: Example
Slight deviation from above : We will follow the code presented at the end of this lecture, and
adopt a 32-bit (signed) fingerprint. Nothing about these details changes the fundamental
concept.

 T = "try eduroam; it won't work"

 P = "eduroam"

d = 256

q = 101

p = 109+256 (97+256 (111+ (256 (114+256 (117+256 (100+256 * 101)))))) % 101 = 72
m a o r u d e

t0 = 117+256 (100+256 (101+ (256 (32+256 (121+256 (114+256 * 116)))))) % 101 = 2

u d e ‘ ‘ y r t

Rabin-Karp: Example
Slight deviation from above : We will follow the code presented at the end of this lecture, and
adopt a 32-bit (signed) fingerprint. Nothing about these details changes the fundamental
concept.

 T = "try eduroam; it won't work"

 P = "eduroam"

d = 256

q = 101

p = 109+256 (97+256 (111+ (256 (114+256 (117+256 (100+256 * 101)))))) % 101 = 72
m a o r u d e

t0 = 2
t1 = (256(2-25*116) + 114) % 101 = 71

2566 % 101

Rabin-Karp: Example
Slight deviation from above : We will follow the code presented at the end of this lecture, and
adopt a 32-bit (signed) fingerprint. Nothing about these details changes the fundamental
concept.

 T = "try eduroam; it won't work"

 P = "eduroam"

d = 256

q = 101

p = 109+256 (97+256 (111+ (256 (114+256 (117+256 (100+256 * 101)))))) % 101 = 72
m a o r u d e

t1 = 71
t2 = (256(71-25*114) + 111) % 101 = 30

Rabin-Karp: Example
Slight deviation from above : We will follow the code presented at the end of this lecture, and
adopt a 32-bit (signed) fingerprint. Nothing about these details changes the fundamental
concept.

 T = "try eduroam; it won't work"

 P = "eduroam"

d = 256

q = 101

p = 109+256 (97+256 (111+ (256 (114+256 (117+256 (100+256 * 101)))))) % 101 = 72
m a o r u d e

t2 = 30
t3 = (256(30-25*121) + 97) % 101 = 68

Rabin-Karp: Example
Slight deviation from above : We will follow the code presented at the end of this lecture, and
adopt a 32-bit (signed) fingerprint. Nothing about these details changes the fundamental
concept.

 T = "try eduroam; it won't work"

 P = "eduroam"

d = 256

q = 101

p = 109+256 (97+256 (111+ (256 (114+256 (117+256 (100+256 * 101)))))) % 101 = 72
m a o r u d e

t3 = 68
t4 = (256(68-25*32) + 109) % 101 = 72

Rabin-Karp: Example
Slight deviation from above : We will follow the code presented at the end of this lecture, and
adopt a 32-bit (signed) fingerprint. Nothing about these details changes the fundamental
concept.

 T = "try eduroam; it won't work"

 P = "eduroam"

d = 256

q = 101

p = 109+256 (97+256 (111+ (256 (114+256 (117+256 (100+256 * 101)))))) % 101 = 72
m a o r u d e

t3 = 68
t4 = (256(68-25*32) + 109) % 101 = 72

 T = "try eduroam; it won't work"
 P = eduroam

t4

Rabin-Karp: Example
Slight deviation from above : We will follow the code presented at the end of this lecture, and
adopt a 32-bit (signed) fingerprint. Nothing about these details changes the fundamental
concept.

 T = "try eduroam; it won't work"

 P = "eduroam"

d = 256

q = 101

p = 109+256 (97+256 (111+ (256 (114+256 (117+256 (100+256 * 101)))))) % 101 = 72
m a o r u d e

t4 = 72
t5 = 8
t6 = 97
t7 = 4
t8 = 53
t9 = 100

t10 = 11
t11 = 5
t12 = 15
t13 = 69
t14 = 58
t15 = 84

t16 = 37
t17 = 29
t18 = 98
t19 = 16

Rabin-Karp Notes

• If your pattern is very small, don’t need to use the (mod q) trick, and you
can avoid false positive matches.

• You can also pick several different primes q1, q2,..., qk and then require
that: 

p ≣ ts (mod q1)

p ≣ ts (mod q2)

⋮

p ≣ ts (mod qk)

Slide adapted from material by Carl Kingsford

Rabin-Karp Notes

• Think about this with respect to DNA / RNA; how long of a pattern can
we search for, without using the mod trick, if we choose the right
encoding (assume machine word = 64-bits)?

Slide adapted from material by Carl Kingsford

Rabin-Karp Notes
• Think about this with respect to DNA / RNA; how long of a pattern can

we search for, without using the mod trick, if we choose the right
encoding (assume machine word = 64-bits)? 

• We can search for a pattern of length <= 32. Consider encoding
each nucleotide in 2-bits e.g. A = 00, C = 01, G = 10, T = 11. Then a
string of up to 32 nucleotides fits in a single machine word.

• For a good rolling hash for nucleotides, see the ntHash paper (https://
academic.oup.com/bioinformatics/article/32/22/3492/2525588)

https://academic.oup.com/bioinformatics/article/32/22/3492/2525588
https://academic.oup.com/bioinformatics/article/32/22/3492/2525588
https://academic.oup.com/bioinformatics/article/32/22/3492/2525588

Basic implementation of Rabin-Karp following implementation 
in CLRS (code from https://www.geeksforgeeks.org/rabin-karp-algorithm-for-pattern-searching/)

https://www.geeksforgeeks.org/rabin-karp-algorithm-for-pattern-searching/

